

NEOKINECT
QUICK START GUIDE

AN UNREAL ENGINE KINECT PLUGIN

DEVELOPED BY RODRIGO VILLANI

0. Essential MUST DO steps

After installing the plugin from the Marketplace there are some needed files that, for license reasons, could not be
included in the download. Fortunately, you can get them from the Kinect SDK installation folders. Without these files,
projects will fail to package. To get those files into the plugin folder structure:

• Make sure you've already installed the Kinect SDK from Microsoft
• Navigate to C:\Program Files\Microsoft SDKs\Kinect\v2.xxx\inc
• Select and copy the files Kinect.Face.h, Kinect.h and Kinect.INPC.h
• Navigate to [Unreal installation]\Engine\Plugins\Marketplace\NeoKinectUnreal\Source\ThirdParty\Kinect\Inc
• Paste the previously copied files into that folder

You must do it only once for each Unreal Engine version you add the plugin to. Then, to prevent crashes in the Editor
and packaged projects, in every project you enable the NeoKinect plugin, remember to:

• Navigate to C:\Program Files\Microsoft SDKs\Kinect\v2.xxx\Redist\Face\x64
• Copy the NuiDatabase folder and Kinect20.Face.dll file
• In the project folder, go inside Binaries\Win64 (create those folders if not existent) and paste the previously

copied folder and file
• In a packaged project, paste those same files into [Package folder]\[Project Name]\Binaries\Win64. It is the

same folder where your packaged exe resides.

If you fail to follow these instructions, your editor or packaged project will crash as soon as it calls any of the plugin’s
functions.

1. Starting the Kinect sensor

 Use the Init Kinect Sensor node to start the sensor. It must be called before any calls
to Frame functions, body tracking or any of the plugin’s functionalities.

After this call, if the sensor is connected and working, it’ll be in use until you
Uninitialize it or quit the game. Inside the Unreal Editor, if not uninitialized, the sensor will be on until the Editor is closed.

2. Turning the Kinect sensor off

Use the Uninit Kinect Sensor to turn it off. This will invalidate all Frame textures and
the bodies and faces arrays. Use it when you are sure you will not need the sensor
data anymore, like on Quit or an End Play event.

3. Checking sensor status

After calling Init Kinect Sensor you can
use the Is Kinect Available node to both
check when the sensor is really on and,
after a while, if it’s still returning false,
display an error message to the player
warning that the sensor is not initializing.
If the later happens, it can be because the

sensor is disconnected or malfunctioning.

4. Getting tracked bodies data

After initializing the sensor you can store the Get Kinect Bodies node
returned array to keep track of all 6 trackable bodies. The array is updated
automatically, so you only need to save it in a variable and use that variable
to check on the bodies’ stats. The bodies in this array represent both tracked
and untracked bodies (that may be tracked sometime).

The Get Kinect Nearest Body node is an utility to always get the user body
data whose hip is closest to the sensor, if any user is being tracked.

The Get Kinect Tracked Bodies node will return an array containing only the
currently tracked bodies. Unlike the array from Get Kinect Bodies, it’s not
automatically updated, so there’s no use in storing it in a variable for later
access. If no bodies are being tracked, it’ll be an empty array.

4.1. Body properties,
functions and events

Among several things, you can check if a
body is currently tracked, the body index
(0~1), its Lean amount, Joints data
(location, orientation, distance between
joints and more), Hands states/poses and
bind to tracking events, so you can execute
actions when a body was just found or lost.

4.2. Joints tracking data

From a tracked body you can get all
joints data from an array or specific
joints status directly.

Color Location and Color Orientation are special coordinates
remapped to fit on top of the Color Frame when viewed from the
sensor’s point of view with the Color Frame as background. This
facilitates AR applications development. The calculations for
these re-projected transforms are a bit heavy thus, disabled by
default and returning zeroed values. In order to enable them, use
the Set Use Joints Color Space Transforms node. This also
enables Color projected transforms for faces tracking.

5. Tracked faces data

Similar to the body functions, the face functions give you access to the sensor’s
tracked faces data.

Remember: head orientation is only well tracked when the user is close to the
sensor. That’s not a plugin flaw, but a Kinect limitation.

5.1. Faces properties,
functions and events

Same as with bodies, you have
access to all of the Kinect face
tracking data through variables,
functions and events accessed from
a KinectFace object (returned from
the Tracked Faces functions
mentioned above).

6. Kinect Frames access

Frames are the Kinect sensors’ captured images. You can
access them in Unreal in the form of Textures and they are
updated automatically, so the only thing you need to do is
call the Set Use Kinect Frame node. It returns the Texture
for you to use in materials and widgets.

You can also get Frame size and FOV if needed.

Some frames are remapped versions of others or different
representations. Some nice ones are the Normalized
Depth, where you can see the distance of real world stuff
in a white to black range and the Body Index in Color
Space, which you can overlay on top of the Color frame to
highlight detected users.

7. Coordinate remapping

The plugin gives you access to all of the Microsoft’s
Kinect API remapping methods as well as some more
advanced ones, like Camera Location to Color with
Depth. It remaps a Camera space location (a 3D location
relative to the sensor, X being positive in the sensor
forward side) into another 3D location that matches the
Color frame. For instance, if you get the elbow joint
location and pass it through this node, you’ll have it

remapped to fit on top of the Color Frame texture if that was used as background and the camera was aligned with the
sensor. An example of that application can be found in the plugin’s content examples.

Find and Learn more

You can find many more nodes by searching for
NeoKinect in the Bluprint Graph context menu.

All nodes have explanations of how they work when
you hover the mouse over them or any of their
parameter properties.

There’s also an example project you can download here: http://files.rvillani.com/unreal/NeoKinectExamples.zip
The examples are:

Avateering

Shows how to make a Skeletal Mesh, with the same bone setup
as Unreal Engine’s Mannequin, follow up to 6 users’
movements.

Color Mapping

See how to project 3D objects on top of a tracked user body’s
joints in the Color Frame.

http://files.rvillani.com/unreal/NeoKinectExamples.zip

Frames Access

Check the BP_KinectFrame Blueprint to see how live Frame
textures can be used in meshes inside the game.

Face Tracking

It is an AR example that applies a helmet on up to 6 users’
faces. The eyes on the helmet glow only when its user’s eyes
are open.

Frame Textures on Widgets

Shows how to apply the Kinect frame textures on Widget
Images via Blueprint.

